Home
Class 12
MATHS
(z-1)/(e^(i theta))+(e^(i theta))/(z-1)"...

(z-1)/(e^(i theta))+(e^(i theta))/(z-1)" be zero "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus of z

If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus of z

If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus of z

If Im((z-1)/(e^(theta i))+(e^(theta i))/(z-1))=0, then find the locus of z

(1 + e^(-i theta))/(1 + e^(i theta)) =

Let P(e^(i theta_(1))),Q(e^(i theta_(2))) and R(e^(i theta_(3))) be the vertices of a triangle PQR in the Argand Plane.Theorthocenter of the triangle PQR is

simplify ((e^(i theta)-e^(-i theta)))/(i(e^(i theta)+e^(-i theta))) where e^(itheta)=a+ib

If z= re^(i theta ) , " then " |e^(iz) | is equal to a)1 b) e^(2r) sin theta c) e^( r sin theta) d) e^(-r sin theta)

-1+i sqrt(3)=r e^(i theta) then theta=

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta