Home
Class 12
MATHS
lim(x->0)(e^x+log{(1-x)/e})/(tanx-x) equ...

`lim_(x->0)(e^x+log{(1-x)/e})/(tanx-x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)+log{(1-x)/(e)})/(tan x-x) equals

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0)(e^(tanx)-e^(x))/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(x rarr0)(e^(x)-log(ex+e))/(x)

lim_(x rarr 0) (e^(tanx)-e^x)/(tanx-x)=