Home
Class 12
MATHS
Let p ,q be integers and let alpha,beta...

Let `p ,q` be integers and let `alpha,beta` be the roots of the equation, `x^2-x-1=0,` where `alpha!=beta` . For `n=0,1,2, .....,l e ta_n=palpha^n+qbeta^ndot` FACT : If `aa n db` are rational number and `a+bsqrt(5)=0,t h e na=0=bdot` `a_(12)=` (a)`a_(11)+a_(10)` (b) `a_(11)-a_(10)` (c)`a_(11)+2a_(10)` (d) `2a_(11)+a_(10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot . Then a_(12) is

Let A,B be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta For n=0,1,2,..., Let a_(n)=A alpha^(-n)+B beta^(-n)

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot If a_4=28 ,t h e np+2q= 7 (b) 21 (c) 14 (d) 12

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot If a_4=28 ,t h e np+2q= 7 (b) 21 (c) 14 (d) 12

Let p,q be integers and let alpha,beta be the roots of the equation,x^(2)-x-1=0, where alpha!=beta. For n=0,1,2,..., let a_(n)=p alpha^(n)+q beta^(n). FACT : If a and b are rational number and a+b sqrt(5)=0, then a=0=b. If a_(4)=28, then p+2q=7 (b) 21( c) 14 (d) 12

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

Let alpha, beta be the roots of the equation x^(2)-6x-2=0 with alpha gt beta . If a_(n)=alpha^(n)-beta^(n) for n ge 1 , then the value of (a_(10)-2a_(8))/(2a_(9)) is

Let alpha,beta be roots of the equation x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n),n in I then A_(n+2)+A_(n-2) is equal to-

Let alpha and beta be the roots of the equation x^(2)-6x-2=0 If a_(n)=alpha^(n)-beta^(n) for n>=0 then find the value of (a_(10)-2a_(8))/(2a_(9))