Home
Class 12
MATHS
f(x)=log(x-[x]) , which [,] denotes the ...

`f(x)=log(x-[x])` , which [,] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.