Home
Class 14
MATHS
f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(...

f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)), for x in R, then f(2002) is equal to

If f(x) =(cos^2x +sin^4x)/(sin^2x +cos^4x) for x in R then f(2020) =

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

If f(x)=(cos^2x+sin^4x)/(sin^2 x+cos^4x), for x in R, then f(2002) is equal to

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is