Home
Class 12
MATHS
tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(1+x+x^(...

tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(1+x+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that i) tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1 ii) tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

cot(tan^(-1)x+cot^(-1)x)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Show that : tan^-1 x+cot^-1(1+x)=tan^-1(1+x+x^2)

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

cot^(-1)x=tan^(-1)x then