Home
Class 13
MATHS
int(0)^(oo)((pi)/(1+pi^(2)x^(2))-(1)/(1+...

int_(0)^(oo)((pi)/(1+pi^(2)x^(2))-(1)/(1+x^(2)))log xdx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((pi)/(1+pi^(2)x^(2))-(1)/(1+x^(2)))logxdx is equal to a) -pi/2lnpi b)0 c) pi/2ln2 d)None of these

int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (b) 0 (c) pi/2log2 (d) none of these

int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdx is equal to (a) -pi/2lnpi (b) 0 (c) pi/2ln2 (d) none of these

int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (b) 0 (c) pi/2log2 (d) none of these

int_(0)^(oo)(xdx)/((1+x)(1+x^(2)))=

int_(0)^((pi)/(2))sin2x log tan xdx is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

int_0^(oo) (xdx)/((1+x)(1+x^(2))) =