Home
Class 12
MATHS
sin^(-1)x-cos^(-1)x=pi/6...

sin^(-1)x-cos^(-1)x=pi/6

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

If 4sin^(-1)x+6cos^(-1)x=3pi then x= . . .

Solve the following equations : sin^(-1)x+cos^(-1)(2x)=pi/6

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

Solve: sin^(-1)x=pi/6+cos^(-1)x

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1