Home
Class 12
MATHS
tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=...

tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4)," so "x" K "

Promotional Banner

Similar Questions

Explore conceptually related problems

If "tan"^(-1)(x-1)/(x-2)+"tan"^(-1)(x+1)/(x+2)=(pi)/4 , find x

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

If tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4) ,then find the value of x .

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,