Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3 - px^2 + qx -r = 0`, then `alpha^4 +beta^4 +gamma^4 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) beta^(3) gamma^(3) =

If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) + beta^(3) + gamma^(3) =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha (beta + gamma) =

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =

If alpha,beta,gamma are the roots of x^(3)+ px^(2)+qx + r=0, then alpha^(3) + beta^(3) + gamma^(3)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3