Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3 + ax + b =0` then the transformed equation having the roots `(beta-gamma)^2,(gamma-alpha)^2,(alpha-beta)^2` is obtained by taking x =

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha ,beta,gamma are the roots of x^3 -7x +6=0 then find the equation whose roots are (alpha-beta)^2 ,(beta-gamma)^2,(gamma-alpha)^2

If alpha ,beta,gamma are the roots of x^3 -7x +6=0 then find the equation whose roots are (alpha-beta)^2 ,(beta-gamma)^2,(gamma-alpha)^2

If alpha,beta,gamma are the roots of the equation x^(3)+3x-2=0 then the equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta) is

If alpha ,beta,gamma are the roots of x^3+px^2+qx+r=0 , then form the cubic equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta)

If alpha,beta,gamma are the roots of x^(3)-x^(2)+x+2=0 then the equation whose roots are beta^(2)gamma^(2),gamma^(2)alpha^(2),alpha^(2)beta^(2) is