Home
Class 11
MATHS
In any triangle ABC, prove thata\ sin\ (...

In any triangle ABC, prove that`a\ sin\ (B\ \ C)\ +b\ sin\ (C\ \ A)\ +\ c\ s in\ (A\ \ B)\ =\ 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that : sin (A + B) = sin C .

In any triangle ABC, prove that : a sin (B -C) + b sin (C -A) +c sin (A-B) = 0 .

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any triangle ABC, prove that : a^3 sin (B-C)+ b^3 sin (C-A)+ c^3 sin (A-B)=0 .

In any triangle ABC , prove that a sin A-b sin B -=c sin (A-B) .

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In any triangle ABC, prove that : a sin (A/2+B)= (b +c) sin frac (A)(2) .

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)