Home
Class 12
MATHS
Let g(x) be a function such that g(a+b)=...

Let `g(x)` be a function such that `g(a+b)=g(a)dotg(b)AAa , b in Rdot` If zero is not an element in the range of `g,` then find the value of `g(x)dotg(-x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=2^x , show that g(a).g(b) = g(a+b).

Let f(x) and g(x) be two functions such that g(x)=([x]f(x))/([x]f(x)) and g(x) is a periodic function with fundamental time period 'T', then minimum value of 'T is

Let g:R rarr R be a differentiable function satisfying g(x)=g(y)g(x-y)AA x,y in R and g'(0)=a and g'(3)=b. Then find the value of g'(-3)

Let g(x) be a function satisfying g(0)=2,g(1)=3,g(x+2)=2g(x)-g(x+1), then find g(5)

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

Let g:RtoR be a function such that, g(x)=2x+5 . Then, what is g^(-1)(x) equal to ?

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

Let g (x) be a function such that g (x + 1) + g (x - 1) = g (x) for every real x. Then for what value of p is the relation g (x + p) = -g (x) necessarily true for every real x?