Home
Class 12
MATHS
Find the value of x for which function a...

Find the value of `x` for which function are identical. `f(x)=tan^(-1)x+tan^(-1)1/x a n dg(x)=sin^(-1)x+cos^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x for which function are identical.f(x)=x and g(x)=(1)/(1/x)

tan(sin^(-1)x+cos^(-1)x)

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

Find the value of x for which function are identical.f(x)=cos x and g(x)=(1)/(sqrt(1+tan^(2)x))

Find the values of x in [0,2pi] for which function f(x) = tan^(-1) (tan x) and g(x) = cos^(-1) (cos x) are identical

Find the value of x for which tan^(-1)(1+x)+tan^(-1)x+tan^(-1)(x-1)=tan3 gets satisfied.

If cos^(-1)x=tan^(-1)x , then sin(cos^(-1)x)=

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b)f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c)f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d)f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x