Home
Class 12
MATHS
The domain of f(x)=ln(a x^3+(a+b)x^2+(b+...

The domain of `f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c),` where `a >0,b^2-4a c=0,i s(w h e r e[dot]` represents greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

The greatest value of f(x)=cos(xe^((x])+7x^(2)-3x),x in[-1,oo] is (where [.] represents the greatest tinteger function).-1 (b) 1 (c) 0 (d) none of these

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

The domain of the function f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x]) (where Il represents the greatest integer function is

Draw the graph of f(x) = [log_(e)x], e^(-2) lt x lt 10 , where [*] represents the greatest integer function.

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]]dx is (wherel.] represent greatest integer function.3 (b) 2 (c) 0( d) 1

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist