Home
Class 12
MATHS
f is an even function, and g is an odd f...

f is an even function, and g is an odd function, such that `f(x) +g(x)=e^x,` for all x. Then which is correct `(A)` `(f(x))^2 +(g(x))^2=1` `(B)` `(g(x))^2-(f(x))^2=1` `(C)` `(f(x))^2=(g(x))^2` `(D)` `(f(x))^2 =(g(x))^2+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is an even function and g(x) is an odd function and satisfies the relation x^(2)f(x)-2f(1/x) = g(x) then

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=