Home
Class 11
MATHS
f:A->A,A={a1,a2,a3,a4,a5}, the number of...

`f:A->A,A={a_1,a_2,a_3,a_4,a_5}`, the number of one one functions so that `f(x) != x_i,x_i in A` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function is defined as f:{a_1,a_2,a_3,a_4,a_5,a_6}rarr{b_1,b_2,b_3} then number of functions in which f(a_i)neb_i is divisible by

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2,a_3 and a_4 be any four consecutive coefficients in the expansion of (1+x)^n , prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)= (2a_2)/(a_2+a_3)

If a_1,a_2,a_3,a_4 are the coefficients of 2nd, 3rd, 4th and 5th terms of (1+x)^n respectively then (a_1)/(a_1+a_2) , (a_2)/(a_2+a_3),(a_3)/(a_3+a_4) are in