Home
Class 11
MATHS
lim(x->-1)[1+x+x^2+...+x^(10)]...

`lim_(x->-1)[1+x+x^2+...+x^(10)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the limits : (i) lim_(xrarr1)[x^(3)-x^(2)+1] (ii) lim_(xrarr3)[x(x+1)] (iii) lim_(xrarr-1)[1+x+x^(2)+….+x^(10)]

Find the limits : (i) lim_(xrarr1)[x^(3)-x^(2)+1] (ii) lim_(xrarr3)[x(x+1)] (iii) lim_(xrarr-1)[1+x+x^(2)+….+x^(10)]

Find the limits : (i) lim_(xrarr1)[x^(3)-x^(2)+1] (ii) lim_(xrarr3)[x(x+1)] (iii) lim_(xrarr-1)[1+x+x^(2)+….+x^(10)]

Find the limits : (i) lim_(xrarr1)[x^(3)-x^(2)+1] (ii) lim_(xrarr3)[x(x+1)] (iii) lim_(xrarr-1)[1+x+x^(2)+….+x^(10)]

Evaluate the following limits, if they exist : lim_(x to -1)[1+x+x^(2)+……+x^(10)] .

lim_(x rarr1)[x^(3)-x^(2)+1]lim_(x rarr1)[x^(3)-x^(2)+1] (iii) quad lim_(x rarr3)[x(x+1)]lim_(x rarr1)[1+x+x^(2)+....+x^(10)]

Find the limits : (i) lim _(x rarr 1) [x^(3)-x^(2)+1] (ii) lim _(x rarr 3)[x(x+1)] (iii) lim _(x rarr-1)[1+x+x^(2)+….+x^(10)]

lim_(x rarr -1) [1+x+x^2+.....+x^10] is :

Evaluate the following limit if they exist : lim_(x rarr -1) [1+x+x^2+.....+x^10] .