Home
Class 12
MATHS
cos^3A sin3A + sin^3A cos3A = ksin 4A =...

`cos^3A sin3A + sin^3A cos3A = ksin 4A => k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

( cos^(3) A + sin^(3) A )/( cos A + sin A ) + (cos^(3) A - sin^(3)A)/( cos A- sin A) =

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

If ( cos 3A+ sin 3A)/( cos A - sin A )=1-k sin 2A , the value of k is

If cos A = 3/4 then (2cos A + 3 sin A)/(4 cos A - sin A) =

( cos A + cos 3A + cos 5A + cos 7A )/( sin A + sin 3A + sin 5A + sin 7A ) =

Prove that ((cos^3A-sin^3A)/(cosA - sinA))- ((cos^3A + sin^3A)/(cosA + sinA))= 2sin A cos A

Prove that: (cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A sin 3A - sin 2A sin 5A + sin 4A sin 7A) = cot 6A cot 5A

sin4A=4cos^(3)A sin A-4sin^(3)A cos A

Prove that (sin^3A+cos^3A)/(sin A+cos A)+(sin^3A-cos^3A)/(sin A-cos A)=2

(cos A-cos3A) / (cos A) + (sin A + sin3A) / (sin A) =