Home
Class 12
MATHS
If g:[-2,2]rarrR , where f(x)=x^3+tanx+...

If `g:[-2,2]rarrR` , where `f(x)=x^3+tanx+[(x^2+1)/P]` is an odd function, then the range of parametric P, where [.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f:[-4,4] rarr R where f(x)=x^(3)+tan x+[(x^(2)+1)/(lambda)] is an odd function then the range of values of lambda is :- (where [.] denotes greatest integer function)

The range of f(x)=[sin{x}], where [x] denotes greatest integer function

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(1)-1 is an odd function then value of parameter lambda is (where ) represents greatest integer function)