Home
Class 12
MATHS
The range of f(x)=cos^(-1)((1+x^2)/(2x))...

The range of `f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2)` is `{0,1+pi/2}` (b) `{0,1+pi)` `{1,1+pi/2}` (d) `{1,1+pi}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) 0 (3 pi)/(4) pi) (0 (3 pi)/(4)

The range of f(x)=sin^(-1)(sqrt(x^(2)+x+1)) is (0,(pi)/(2))(b)(0,(pi)/(3))(c)((pi)/(3),(pi)/(2)) (d) [(pi)/(6),(pi)/(3)]

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) (1) (1) (3 pi)/(4) pi) (0 (3 pi)/(4) 0 (0 pi)

The range of the function f(x)=int_(-1)^(1)(sin xdt)/((1-2t cos x+t^(2))is) (a) [-(pi)/(2),(pi)/(2)]( b) [0,pi](c){0,pi}(d){-(pi)/(2),(pi)/(2)}

The Range of the function y=((cos^(-1)(3x-1))/(pi)+1)^(2)(1)[1,4](2)[0,pi](3)[1,pi](4)[0,pi^(2)]

[" The range of the function "f(x)=sin^(-1)((sqrt(1+x^(4)))/(1+5x^(10)))" is "],[[[-(pi)/(2)*(pi)/(2)]],[0[(pi)/(3)*(pi)/(2))],[0(0,(pi)/(2)]]]

The largest interval lying in (-pi/2,pi/2) for which the function [f(x)=4^-x^2+cos^(-1)(x/2-1)+log(cosx)] is defined, is (1) [0,pi] (2) (-pi/2,pi/2) (3) [-pi/4,pi/2) (4) [0,pi/2)

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)