Home
Class 12
MATHS
The range of f(x)=[|sin x|+|cosx"|""]"do...

The range of `f(x)=[|sin x|+|cosx"|""]"dot` Where [.] denotes the greatest integer function, is {0} (b) {0,1} (c) {1} (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

The range of the function f(x)=log[cos|x|+0.999] (where [1 denote thegreatest integer function) is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cos x)), where [.] denotes greatest integer function.