Home
Class 12
MATHS
If the function f:(1,oo)rarr(1,oo) is d...

If the function `f:(1,oo)rarr(1,oo)` is defined by `f(x)=2^(x(x-1)),t h e nf^(-1)(x)` is `(1/2)^(x(x-1))` (b) `1/2(1+sqrt(1+4(log)_2x))` `1/2(1-sqrt(1+(log)_2x)` (d) not defined

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

f:(-oo,oo)rarr(0,1] defined by f(x)=(1)/(x^(2)+1) is