Home
Class 12
MATHS
Consider a real-valued function f(x) sat...

Consider a real-valued function f(x) satisfying `2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n d(1)=a ,w h e r ea!=1.` Prove that `(a-1)` `sum_(i=1)^nf(i)=a^(n+1)-a`

Promotional Banner

Similar Questions

Explore conceptually related problems

A real valued function f(x) is satisfying f(x+y)=yf(x)+xf(y)+xy-2 for all x,y in R and f(1)=3, then f(11) is

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let a real valued function f satisfy f(x+y)=f(x)f(y)AA x,y in R and f(0)!=0 Then g(x)=(f(x))/(1+[f(x)]^(2)) is

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1_ =a. Then , f (x) =

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a function satisfying f(x+y)=f(x)+f(y) for all x,y in R. If f(1)=k then f(n),n in N is equal to