Home
Class 12
MATHS
If the domain of y=f(x)i s[-3,2], then f...

If the domain of `y=f(x)i s[-3,2],` then find the domain of `g(x)=f(|[x]|),w h e r[]` denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If domain of y=f(x) is xin[-3,2] , then the domain of f([x]) is

Find the domain of f(x) = e^(x/2)

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If domain of y=f(x is x in[-3,2], then domain of y=f([x] : (where [] denotes greatest integer function) (A) [-3,2], (B) [-2,3] (C) [-3,3], (D) [-2,3]