Home
Class 12
MATHS
If f(x)=log[(1+x)/(1-x)], then prove tha...

If `f(x)=log[(1+x)/(1-x)],` then prove that `f[(2x)/(1+x^2)]=2f(x)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))

If f(x)=log((1-x)/(1+x)),-1ltxlt1 , then show that : f(-x)=-f(x) .

If f(x) = log (x – 2) – 1/x , then

If f(x)=log_(e)((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+ab))

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=