Home
Class 12
MATHS
If f(x)=sinx+cosx and g(x)=x^2-1, then ...

If `f(x)=sinx+cosx `and `g(x)=x^2-1`, then `g(f (x)) `is invertible in the domain .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=cosx+sinx and g(x)=x^(2)-1 , then g(f(x)) is injective in the interval

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

f(x)={x+1,x =0 and g(x)={x^(3),x =1 Then find f(g(x)) and find its domain and range.

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=