Home
Class 12
MATHS
X and Y are two sets and f: X->Y If {f(c...

X and Y are two sets and `f: X->Y` If `{f(c)=y; c subX, y subY}` and `{f^(-1)(d)=x;d subY,x sub X`, then the true statement is `(a) f(f^(-1)(b))=b` `(b) f^(-1)(f(a))=a` `(c) f(f^(-1)(b))=b, b sub y` `(d) f^(-1)(f(a))=a, a sub x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

If f((x)/(y))=(f(x))/(f(y)),AA y,f(y)!=0 and f'(1)=2, find f(x)

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x)=|(log)_(2)x|, then f(1^(+))=1 (b) f(1^(-))=-1f(1)=1( c) f'(1)=-1

If f(x)={[-3x+2,x =1]} ,then which of the following is not true (A) f'(1^(+))=1 (B) f'(1^(-))=-3 (C) f'(1^(-))=f'(1^(+))=1 (D) f is not differentiable at x=1

If f((ax+b)/(x-a))=x, then f^(-1)(x)= (a) x (b) (bx+a)/(x-b)( c) f(x)

If f(x)=[cosx-sinx -sin x cosc 1] and g(y)=[cosy sin y siny cos y], then [f(x)g(y)]^-1 is equal to (a) f(-x)g(-y) (b) g(-y)f(-x) (c) f(x^-1)g(y^-1) (d) g(y^-1)f(x^-1)

f(x)=(x)/(x-1) then (f(a))/(f(a+1)) is equal to a.f(-a) b.f(1/a) c.f(a^(2)) d.f (-(a)/(a-1))

f(x/y)=f(x)/f(y) and f'(1)=2024 , then