Home
Class 12
MATHS
Find the equivalent definition of f(x)=...

Find the equivalent definition of `f(x)=max{x^2,(1-x)^2,2x(1-x)}`where `0lt=xlt=1`

Text Solution

Verified by Experts

Here, for maximum, let us consider `f_(1)(x)=x^(2),f_(2)(x)=(1-x)^(2), " and " f_(3)(x)=2x(1-x)`.
Now graph for `f_(1)(x),f_(2)(x), " and " f_(3)(x)` are as follows.

Here, neglect the graph that is below the points of intersection.
`f(x)={((1-x)^(2)",",0le x lt (1)/(3)),(2x(1-x)",",(1)/(3) le x lt (2)/(3)),(x^(2)",",(2)/(3) le x le 1):}`
Promotional Banner

Similar Questions

Explore conceptually related problems

The functions defined by f(x)="max" {x^(2),(x-1)^(2),2x(1-x)}, 0lexle1

The function f(x)="max" {(1-x), (1+x), 2} is equivalent to

Draw the graph of the function f(x)=max.{sin x,cus2x},x in[0,2 pi] Write the equivalent definition of f(x) and find the range of the function.

Find the greatest and least values of function f(x)={-x , -1lt=x<0 2-(x-1)^2, 0lt=xlt=2

Let f(x)=max{x,x^(2)} . Then, equivalent definition of f(x).

Let f(x)=M a xi mu m{x^2,(1-x)^2,2x(1-x)}, where 0lt=xlt=1. Determine the area of the region bounded by the curves y=f(x) ,x-axis ,x=0, and x=1.

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

Discuss the continuity of the function f(x) at x=1//2 , where f(x)={1//2-x ; 0lt=x<1//2 1; x=1//2 3//2-x ; 1//2

Discuss the continuity of the function f(x)={x , 0lt=x<1//2 12 , x=1//2 1-x , 1//2