Home
Class 12
MATHS
Let g(x) be a function defined on[-1,1]...

Let `g(x)` be a function defined on`[-1,1]dot` If the area of the equilateral triangle with two of its vertices at `(0,0)`a n d`(x ,g(x))` is (a)`(sqrt(3))/4` , then the function `g(x)` is (b)`g(x)=+-sqrt(1-x^2)` (c)`g(x)=sqrt(1-x^2)` (d)`g(x)=-sqrt(1-x^2)` `g(x)=sqrt(1+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) be a function defined on [-1,1]. If the area of the equilateral triangle with two of its vertices at (0,0) and (x,g(x)) is (sqrt(3))/(4) , then the function g(x) , is

Let g(x) be a function defined on [-1,1] .If the area of the equilateral triangle with two of its vertices at (0,0) and (x,g(x)) is (sqrt(3))/(4) .then the function g(x) is:

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

If the function,g(x)={k sqrt(x+1),0<=x<=3mx+2,3

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

Q.The domain of the function f(g(x)) is (A) [0,sqrt(2)](B)[1,2](C)[-1,sqrt(2)](D)[sqrt(2),2]

Let f(x)=1+sqrt(x) and g(x)=(2x)/(x^(2)+1)

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?