Home
Class 14
MATHS
If log3x+log9 x^2+log27 x^3=9, then x eq...

If `log_3x+log_9 x^2+log_27 x^3=9`, then `x` equals a. `3` b. `9` c. `27` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

IF log_3x+log_9x+log_27x+log_729x=4 then x=…………..

Prove that log_3 2=log_9 4=log_27 8

If log_2 (log_9 x +3/2+ 8^x) = 3x, then value of 27x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

If log_(3)27.log_x7=log_(27)x.log_(7)3 , the least value of x is