Home
Class 12
MATHS
Find the period of f(x)=sin(pix)/(n !)-c...

Find the period of `f(x)=sin(pix)/(n !)-cos(pix)/((n+1)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!)) , is

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

Find the periods of following functions. {:((i)f(x)=[sin3x]+abs(cos6x),(ii)f(x)=1/2{abs(sinx)/cosx+abs(cosx)/sinx}),((iii)f(x)=e^(cos^(4)pix+x-[x]+cos^(2)pix),(iv)f(x)=3sin""(pix)/3+4cos""(pix)/4):} {:((v)f(x)=cos3x+sinsqrt(3)pix,(vi)f(x)=sin""(pix)/(n!)-cos(pix)/((n+1)!)),((vii)f(x)=x-[x-b],(viii)f(x)=e^(In(sinx))+tan^(3)x-cosec(3x-5)):}

The period of the function f(x)=cos(pi(x)/(n!))-sin(pi(x)/((n+1)!)) is

The period of the function sin""((pix)/(2))+cos((pix)/(2)) , is

Find the value of lim_(x to 1) (1+sin pix)^(cos pix)

If n in N, and the period of (cos nx)/(sin((x)/(n))) is 4 pi then