Home
Class 12
MATHS
lim(n -> oo) (((n+1)(n+2)(n+3).......3n)...

`lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)`is equal to

Answer

Step by step text solution for lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

Knowledge Check

  • lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

    A
    `(18)/(e^(4))`
    B
    `(27)/(e^(2))`
    C
    `(9)/(e^(2))`
    D
    None of these
  • lim_(ntooo)(((n+1)(n+2). . .3n)/((n^(2n))))^(1//n) is equal to

    A
    `(27)/(e^(2))`
    B
    `(9)/(e^(2))`
    C
    `3log3-2`
    D
    `(18)/(e^(4))`
  • lim_(n to oo)(((n-1)(n+2)…3n)/(n^(2n)))^(1//n) is equal to:

    A
    `(27)/(e^(2))`
    B
    `(9)/(e^(2))`
    C
    `3log 3-2`
    D
    `(18)/(e^(4))`
  • Similar Questions

    Explore conceptually related problems

    lim_(ntooo)(((n+1)(n+2)....3n)/(n^(2n)))^(1//n) is equal to

    underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

    lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

    lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

    lim_(n to oo) ((2n^(2)-3)/(2n^(2)-n+1))^((n^(2)-1)/(n)) is equal to