Home
Class 12
MATHS
lim(n -> oo) (((n+1)(n+2)(n+3).......3n)...

`lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(ntooo)(((n+1)(n+2)....3n)/(n^(2n)))^(1//n) is equal to

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -