Home
Class 12
MATHS
Find the natural number a for which sum(...

Find the natural number `a` for which `sum_(k=1)^nf(a+k)=16(2^n-1),` where the function `f` satisfies the relation `f(x+y)=f(x)f(y)` for all natural number `x , ya n d ,fu r t h e r ,f(1)=2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

The natural number a for which sum_(k=1)^(n)f(a+k)=2n(33+n) where the function f satisfies the relation f(x+y)=f(x)+f(y) for all the natural numbers x,y and further f(1)=4 is

The natural number a for which sum_(k=1,n) f(a+k)=16(2^n-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x,y and further f(1)=2 is:- A) 2 B) 3 C) 1 D) none of these

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

Function f satisfies the relation f(x)+2f((1)/(1-x))=x AA x in R-{1,0} then f(2) is equal to

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1_ =a. Then , f (x) =

If the function f(x) satisfies the relation f(x+y)=y(|x-1|)/((x-1))f(x)+f(y) with f(1)=2. then lim_(x rarr1)f'(x) is

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=