Home
Class 12
MATHS
The range of f(x)=[sinx+[cosx+[tanx+[sec...

The range of `f(x)=[sinx+[cosx+[tanx+[secx]]]],x in (0,pi/4),w h e r e` [.] denotes the greatest integer function less than or equal to `x ,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

If f(x)=sin[pi^(2)]x+sin[-pi^(2)]x where [x] denotes the greatest integer less than or equal to x then

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

if [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0)(x[x])/(sin|x|) , is

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.