Home
Class 12
MATHS
If the line lx+my=1 is a normal to the e...

If the line `lx+my=1` is a normal to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` then `(a^(2))/(l^(2))+(b^(2))/(m^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

The line y=mx+c is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if c

The line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. then prove that (a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If straight line lx+my+n=0 is a tangent of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)l^(2)+b^(2)m^(2)=n^(2)

The line lx + my + n = 0 is a normal to (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 , provided