Home
Class 11
MATHS
" If the period of "sin(x+8x+27x+......n...

`" If the period of "sin(x+8x+27x+......n^(3)x)" is "(k pi)/(n^(2)(n+1)^(2))" then "k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of tan(x+8x+27x+...+ n^(3) x) is (k pi)/(n^(2)(n+1)^(2)) then k=

Period of tan(x+8x+27x+...+n^(3)x) is

Find the period of f(x)=sin(pi x)/(n!)-cos(pi x)/((n+1)!)

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

If the coefficient of x^(n) in (x+1)/((x-1)^(2)(x-2)) is K-2n-(3)/(2^(n+1)), then K=

If the period of " " 9^(sin^(2)pi x+x-[x]+sin^(4)pi x)" " ([.]is G.I.F) Is k then (k pi)/(2) is

The solution of the equation sin^(3)x+sin x cos x+cos^(3)x=1 is (n in N)2n pi(b)(4n+1)(pi)/(2)(2n+1)pi(d) None of these

If n in N, and the period of (cos nx)/(sin((x)/(n))) is 4 pi then

The period of the function f(x)=cos(pi(x)/(n!))-sin(pi(x)/((n+1)!)) is

The complete solution of the equation 7cos^(2)x+sin x cos x-3=0 is given by n pi+(pi)/(2);(n in1)( b) n pi-(pi)/(4);(n in I)n pi+(tan^(-1)4)/(3);(n in I)n pi+3 pi,k pi+(tan^(-1)4)/(3);(n,k in I)