Home
Class 12
MATHS
Let f(x) be a continuous function such t...

Let `f(x)` be a continuous function such that `int_(-2)^(2)f(x)dx=0` and `int_(0)^(2)f(x)dx=2.` The area bounded by `y=f(x)`, `x` -axis, `x=-2 and x=2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If f(x) is a continuous function such that f(x)|0,AA x in[2,10] and int_(4)^(8)f(x)dx=0 then find

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If int_(-2)^(0) f (x) dx =k, then int_(-2)^(0) |f(x)|dx is

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx