Home
Class 12
MATHS
If the tangent at theta on the ellipse x...

If the tangent at `theta` on the ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` meets the auxiliary circle at two points which subtend a right angle at the centre,then `e^(2)(2-cos^(2)theta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at the point alpha on the ellipse x^2/a^2+y^2/b^2=1 meets the auxiliary circle in two points which subtends a right angle at the centre, then the eccentricity 'e' of the ellipse is given by the equation (A) e^2(1+cos^2alpha)=1 (B) e^2(cosec^2alpha-1)=1 (C) e^2(1+sin^2alpha)=1 (D) e^2(1+tan^2alpha)=1

The tangent at a point P(a cos phi,b sin phi) of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 meets its auxiliary circle at two points,the chord joining which subtends a right angle at the center.Find the eccentricity of the ellipse.

The tangent at the point alpha on a standard ellipse meets the auxiliary circle in two points which subtends a right angle at the centre. Show that the eccentricity of the ellipse is (1+ sin^2aplha)^-1/2 .

Chord of contact of tangents drawn from the point M(h, k) to the ellipse x^(2) + 4y^(2) = 4 intersects at P and Q, subtends a right angle of the centre theta

Prove that the chord of contact of tangents drawn from the point (h,k) to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 will subtend a right angle at the centre, if h^(2)/a^(4)+k^(2)/b^(4)=1/a^(2)+1/b^(2)

locus of the middle point of the chord which subtend theta angle at the centre of the circle S=x^(2)+y^(2)=a^(2)