Home
Class 12
MATHS
Let f:R rarr R be f(x)=[{:(x^(3)-2x, if ...

Let `f:R rarr R` be `f(x)=[{:(x^(3)-2x, if x in Q), (x^(2)-2, if x in R-Q):}`, The sum of all possible values of `alpha in R` for which `lim_(x rarr a)f(x)` exists, is
(A) `sqrt(2),`
(B) `2sqrt(2)`
(C) `1`
(D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be given by f(x)={5x, if x in Qx^(2)+6,quad if x in R-Q then

f:R rarr R defined by f(x)=(x^(2)+x-2)/(x^(2)+x+1) is

Let f:r rarr R, where f(x)=2^(|x|)-2^(-x) then f(x) is

f:R rarr R defined by f(x)=(x^(2)+x-2)/(x^(2)+x+1) is:

If f:R rarr R defined by f(x)=2x+5, if x>0=3x-2, if x<=0: then f is

Let f:R rarr R be defined by f(x)=x^(2)-3x+4 for the x in R then f^(-1)(2) is

Let f:R rarr R be defined by f(x)=sqrt(25-x^2) Find domain of f(x)

Let f:R rarr R be a function defined by f(x)=(x^(2)+2x+5)/(x^(2)+x+1) is

If f:R rarr R is defined by f(x)=x/(x^2+1) find f(f(2))

Let f:R rarr R be defined by f(x)={({x} if x in Q),(x if x in R-Q):} If lim_(x rarr alpha)f(x) exist then the true set of values of alpha is {k} denotes the fractional part of k