Home
Class 12
MATHS
[" The solution of equation "],[log((dy)...

[" The solution of equation "],[log((dy)/(dx))=9x-6y+6;" given that "],[y(0)=1" is "],[[" (1) "4e^(6y)=3e^(9x+6)+e^(6)," ( ) "],[" (2) "3e^(6y)=4e^(9x+6)-e^(6)," 3e "6y=2e^(9x+6)+e^(6)],[" (4) "2e^(6y)=3e^(9x+6)-e^(6)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation log((dy)/(dx))=4x-2y-2,y=1 when x=1, is (A)2e^(2y+2)=e^(4x)+e^(2)(B)2e^(2y-2)=e^(4x)+e^(2)(C)2e^(2y+2)=e^(4x)+e^(4)(D)3e^(2y+2)=e^(3x)+e^(4)(C)2e^(2y+2)=e^(4x)+e^(4)(D)

" 9.The solution of "(dy)/(dx)=e^(x+y)+x^(2)e^(x^(3)+y)" is "

e^(6x)"cos"3x

The solution of the differential equation dy/dx=e^(y-x)+e^(y+x) ; y(0) = 0 is (1) y=e^x(x+1) (2) e^-y=(e^-x-e^x)+1 (3) e^-y =(e^-x-e^x)-1 (4) e^-y =(e^-x+e^x)+1

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If int(3e^(x)+4e^(-x))/(5e^(x)+6e^(-x))=ax+b log(5e^(2x)+6)+c, then

" (6) "int(e^(2x))/(e^(2x)+1)dx

Let y(x) is the solution of differential equation (dy)/(dx)+y=x log x and 2y(2)=log_(e)4-1 Then y(e) is equal to (A) (e^(2))/(2) (B) (e)/(2)(C)(e)/(4)(D)(e^(2))/(4)

If y=3e^(2x)+2e^(3x), show that y_(2)-5y_(1)+6y=0

The simultaneous equations -3x + 4y = 7, 9/2 x - 6y = -21/6 " have " ………