Home
Class 12
MATHS
underset(x rarr 0)(lim) (sin x)/(x) =...

`underset(x rarr 0)(lim) (sin x)/(x) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

Check given limits is in indeterminate forms or not?. Also indicate the form underset(x rarr 0 ) ("lim") ( 1+ sin x) ^((1)/( x))

If underset( x rarr 0 ) ("Lim") ( sin 2x + a sinx )/( x^(3)) = p ( finite ) , then

If underset( x rarr0 )("lim")((sin nx) [ ( a-n ) nx - 2 tan x])/( x^(2))=0 then value of a=

lim_(x rarr0) (sin x)/(x)

For x gt 0, underset( x rarr 0) ( "Lim") [ ( sin x)^(1//x) + ((1)/( x))^("sinx ) ] is

Evaluate underset(x rarr 0 ) ("lim") [ ( sin^(-1) x )/( x ) ] ( where [ ** ] denotes the greatest integer function ) .

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :

The value of underset( x rarr 0 ) ( "Lim") ( sin ( ln ( 1+ x)))/( ln ( 1+ sin x )) is

underset( x rarr0 ) ("lim") (sin [cos x ])/( 1+[cos x ] ) ( where {x} denotes fractional part function )