Home
Class 11
MATHS
If A=[[1,0],[2,1]] then A^(3)=...

If `A=[[1,0],[2,1]]` then `A^(3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,5],[2,-1,3],[4,1,0]] and B=[[3,2,1],[0,2,1],[3,2,5]] .Show that (a) ( A + B )' = A' + B' (b) (2A)'=2A'

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

let A=[[1,0,5],[2,-1,3],[4,1,0]] and B=[[3,2,1],[0,2,1],[3,2,5]] find A',B' and (A+B)' show that (A+B)'=A'+B'

If A=[[1,2,3],[0,1,0],[1,1,0]] and B=[[-1,1,0],[0,-1,1],[2,3,4]] show that AB!=BA

If A=[[1,-2,4],[0,2,1],[-4,5,3]] find adj A .

Let A=[[3,1,4],[0,2,-1],[1,-3,5]] ,then 48*|A^(-1)|=---

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If A=[[3,2,-1],[2,-2,0],[1,3,1]],B=[[-3,-1,0],[2,1,3],[4,-1,2]] and X=A+B then find X