Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=ln{x}+sqrt(x-2{x})` is: (where { } denotes fractional part function)
(A) `(1,oo)`
(B) `(0,oo)`
(C) `(1,oo)~I^(+)`
(D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

If domain of f(x) is (-oo,0], then domain of f(6{x}^(2)-5(x)+1) is (where {.} represents fractional part function)

" 4.The domain of the function "f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{" -} denotes the fractional part,is "

The domain of definition of the function f(x)="log"|x| is R b. (-oo,0) c. (0,oo) d. R-{0}