Home
Class 11
MATHS
The value of the lim(x rarr0)(sin(5x^(5)...

The value of the `lim_(x rarr0)(sin(5x^(5)+4x^(4)+3x^(3)+2x^(2)))/(ln(cos(x^(3)+x)))` is equal

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin(x^(2)+4x))/(x^(3)-5x^(2)+2x)

lim_(x rarr0)x log(sin x)

lim_(x rarr0)(x-sin x)/(x^(3)) =

The value of lim_(x rarr0)|x|^(sin x) equals

lim_(x rarr0)(sin x-x)/(x^(3))

Evaluate lim_(x rarr 0)(sin(3x))/(x)

lim_(x rarr0)(sin log(1-x))/(x)

lim_(x rarr0)((4+x)^(3)-64)/(x)

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

lim_(x rarr0)x^(2)+3x+3