Home
Class 12
MATHS
If u=sqrt(a^2cos^2theta+b^2sin^2theta)+s...

If `u=sqrt(a^2cos^2theta+b^2sin^2theta)+sqrt(a^2sin^2theta+b^2cos^2theta),` then the difference between maximum and minimum values of `u^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta) then the difference between maximum and minimum values of u^(2) is

If u=a^2cos^2theta+b^2sin^2theta+a^2sin^2theta+b^2cos^2theta then the difference between the maximum and minimum values of u^2 is given by- (a^2+b^2) b. 2sqrt(a^2+b^2) c. (a+b)^2 d. (a-b)^2

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta^(2)) then the difference between the maximum and minimum values of u^(2) is given by : (a) (a-b)^(2) (b) 2sqrt(a^(2)+b^(2))(c)(a+b)^(2) (d) 2(a^(2)+b^(2))

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

Simplify sqrt(1- sin^2theta ) + (1 cos^2theta)

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta