Home
Class 11
MATHS
For any the real thetathe maximum value ...

For any the real `theta`the maximum value of`cos^2(costheta)+sin^2(sintheta)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any the real thetathe maximum value of cos^(2)(cos theta)+sin^(2)(sin theta) is

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . Find the minimum value of costheta+cos2theta for all real values of theta . Find the maximum and minimum value of cos^(2)theta-6sin thetacos theta+3sin^(2)theta+2 .

Maximum and minimum value of 2sin^(2)theta-3sintheta+2 is-

If 3+cos^(2)theta=3(cot^2theta+sin^2theta).0^(@)ltthetalt90^(@) , then what is the value of (costheta+2sintheta) ?

If theta is an acute angle and sintheta=costheta , then find the value of 2tan^(2)theta+sin^(2)theta-1 .

If sqrt3costheta=sintheta , then the value of (4sin^(2)theta-5costheta)/(3costheta+1) is:

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If 5 cos theta-12sintheta=0, the value of overset(2sintheta+costheta) (costheta-sintheta) is:

Statement I The maximum value of sin theta+costheta is 2. Statement II The maximum value of sin theta is 1 and that of cos theta is also 1.