Home
Class 11
MATHS
If the incircle of a triangle ABC passes...

If the incircle of a triangle `ABC` passes through its cirumcentre then `2+CosA+CosB+CosC` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the incircle of the triangle ABC passes through its circumcenter, then find the value of 4 sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)

If the median of triangle ABC through A is perpendicular AB, then the value of sinA cosB + 2sinB cosA is equal to

If in a triangle ABC, 2cosA=sinBcosecC , then

In a triangle ABC cosA+cosB+cosC<=k then k=

In any triangle ABC, sinA -cosB=cosC , then angle B is

In a tringle ABC, sin A-cosB=cosC, then angle B, is

Which of the following holds goods for any tiangle ABC, a,b,c are the lengths of the sides R is circumradius (A) (cosA)/a+(cosB)/b+(cosC)/c= (a^2+b^2+c^2)/(2abc) (B) (sinA)/a+(sinB)/b+(sinC)/c=3/(2R0 (C) (cosA)/a=(cosB)/b=(cosC)/c (D) (sin2A)/a62=(sin2B)/b^2=(sin2C)/c^2

If the sides a, b, c of a triangle ABC are the roots of the equation x^(3)-13x^(2)+54x-72=0 , then the value of (cosA)/(a)+(cosB)/(b)+(cosC)/(c ) is equal to :