Home
Class 12
MATHS
The foot of the perpendicular from (0,0)...

The foot of the perpendicular from `(0,0)` to the line `x cos alpha+y sin alpha=p` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Coordinates of the foot of the perpendicular drawn from 0,0 to he line jolning (a cos alpha,a sin alpha) and (a cos beta,a sin beta) are

If the foot of the perpendicular from (-4,5) to the straight line 3x-4y-18=0 is (alpha,beta) then value of (alpha+beta)=

The length of the perpendicular from the origin on the line (x sin alpha)/(b ) - (y cos alpha)/(a )-1=0 is

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

Prove that the area of the parallelogram formed by the lines x cos alpha+y sin alpha=p,x cos alpha+y sin alpha=q,x cos beta+y sin beta=r and x cos beta+y sin beta=sis+-(p-q)(r-s)csc(alpha-beta)

If p&q are lengths of perpendicular from the origin x sin alpha+y cos alpha=a sin alpha cos alpha and x cos alpha-y sin alpha=a cos2 alpha, then 4p^(2)+q^(2)

The locus of the point of intersection of the lines x cosalpha + y sin alpha= p and x sinalpha-y cos alpha= q , alpha is a variable will be