Home
Class 12
MATHS
[" Let "f" be a twice differential funct...

[" Let "f" be a twice differential function "],[" satisfying "(e^(x)f''(x)-e^(x)f'(x))/(e^(2x))=1" and "],[f(0)=0,f'(0)=1," then the value of "],[int_(0)^(1)(f(x))/(x)dx" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiabel function satisfying int_(1)^(f(x))f^(-1)(t)dt=(1)/(3)(x^((3)/(2))-8)AA x>0 and f(1)=0, Then the value of f(9) is

Let f be a differentiabel function satisfying int_(1)^(f(x))f^(-1)(t)dt=(1)/(3)(x^((3)/(2))-8)AA x>0 and f(1)=0 Then the value of f(9) is

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

Let f be a twice differentiable function on R and satisfying f''(x)=(x^(2)+1)^((-3)/(2))AA x in R .If f'(0)=0 and f(1)=sqrt(2)+1 then int_(0)^(1)f(x)dx =

Let f is a differentiable function such that f'(x)=f(x)+int_(0)^(2)f(x)dx,f(0)=(4-e^(2))/(3) find f(x)

Let f(x) be a continous function on R. If int_(0)^(1)[f(x)-f(2x)]dx=5 and int_(0)^(2)[f(x)-f(4x)]dx=10 then the value of int_(0)^(1)[f(x)-f(8x)]dx=

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let a function f(x) be such that f"(x)=f'(x)+e^(x)&f(0)=0,f'(0)=1 then find the value of ln(((f(2))^(2))/(4))

If 2f(x)+f(-x)=(1)/(x)sin(x-(1)/(x)) then the value of int_((1)/(e))^(e)f(x)dx is